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Abstract: Random Forest (RF) is a bagging ensemble model and has many important advantages,
such as robustness to noise, an effective structure for complex multimodal data and parallel comput-
ing, and also provides important features that help investigate biomarkers. Despite these benefits,
RF is not used actively to predict Alzheimer’s disease (AD) with brain MRIs. Recent studies have
reported RF’s effectiveness in predicting AD, but the test sample sizes were too small to draw any
solid conclusions. Thus, it is timely to compare RF with other learning model methods, including
deep learning, particularly with large amounts of data. In this study, we tested RF and various
machine learning models with regional volumes from 2250 brain MRIs: 687 normal controls (NC),
1094 mild cognitive impairment (MCI), and 469 AD that ADNI (Alzheimer’s Disease Neuroimaging
Initiative database) provided. Three types of features sets (63, 29, and 22 features) were selected,
and classification accuracies were computed with RF, Support vector machine (SVM), Multi-layer
perceptron (MLP), and Convolutional neural network (CNN). As a result, RF, MLP, and CNN showed
high performances of 90.2%, 89.6%, and 90.5% with 63 features. Interestingly, when 22 features
were used, RF showed the smallest decrease in accuracy, −3.8%, and the standard deviation did not
change significantly, while MLP and CNN yielded decreases in accuracy of −6.8% and −4.5% with
changes in the standard deviation from 3.3% to 4.0% for MLP and 2.1% to 7.0% for CNN, indicating
that RF predicts AD more reliably with fewer features. In addition, we investigated the importance
of the features that RF provides, and identified the hippocampus, amygdala, and inferior lateral
ventricle as the major contributors in classifying NC, MCI, and AD. On average, AD showed smaller
hippocampus and amygdala volumes and a larger volume of inferior lateral ventricle than those of
MCI and NC.

Keywords: Alzheimer’s disease; mild-cognitive impairment; magnetic resonance imaging; machine
learning; Random Forest; feature importance; Gini index; convolutional neural network

1. Introduction

Alzheimer’s disease (AD), a type of dementia, is a neurodegenerative disease that
destroys neuronal cells selectively. As the number of patients continues to increase steadily,
the disease is emerging as a global problem today because some cases cause death [1].
There are many hypotheses about AD’s pathway and many drugs have been developed to
slow or stop the disease’s rate of progression [2]. However, because there are no drugs or
treatments that cure AD clearly, early and precise diagnosis of AD is even more critical.
One way to diagnose dementia or AD is to use a survey-based test, which include the
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Clinical Dementia Rating (CDR), Mini-Mental State Exam (MMSE), etc. [3,4]. These are
designed to test brain functions, including memory and emotion, to assess the disease’s
progression. Surveys are effective when the patients begin to experience symptoms, but it
is difficult to identify signs of the disease before symptom onset.

Mild Cognitive Impairment, referred to as MCI, is the early stage of AD. Patients with
MCI differ from others in their same age group, but are not affected significantly in their
daily lives. Occasionally they experience amnesia or depression, but most are unaware
of, or fail to acknowledge that they have the disease. Consequently, more than half of
MCI patients progress to dementia within five years [5], and are classified as having AD,
which is the most common form of dementia. It alters parts of the brain in many respects.
Current well-known biological biomarkers are tau and amyloid-β deposits that affect loss
of brain volume or neurons in the hippocampus and cerebral cortex [6]. According to
one study, more than 80% of AD and 90% of those with normal cognitive function can be
distinguished with total-tau (T-tau), phospho-tau (P-tau), and amyloid-β, [7]. However,
diagnosis with these biological biomarkers is too difficult for non-domestic people and is
time consuming.

There have been attempts to diagnose the MCI and AD using noninvasive methods.
These studies used microRNAs with blood serum [8], pupil dilation response [9], and
electroencephalogram [10–14]. Magnetic resonance imaging (MRI), which calculates each
brain region’s volume, is also an effective way to diagnose AD. When researchers gained
access to MRI data, studies of AD using brain volume began to be conducted actively. Since
then, new observable structural biomarkers, such as shrinkage of the hippocampus, have
been identified. However, there are some problems using MRI as well. It is difficult to
diagnose AD with just one MRI, because reduction in brain volume needs to be observed to
do so, except in serious cases. Thus, patients should have an MRI at least every six months
to determine differences in the brain’s volume, which is costly and time consuming. Due
to this problem, diagnosing AD with only one MRI has become a severe problem. There
have been many attempts to interpret images of the brain and more complex models are
needed because of the many factors that affect AD [15].

In recent years, machine learning (ML) and deep learning have been developed to
solve complex problems in various fields. Traditional machine learning methods are based
on statistics and must extract features from the raw data first. One study attempted to
evaluate Support Vector Machine analysis with 819 subjects in 2011 [16]. They chose
nine Volumes of interest (VOIs) manually as features that are known to be affected in
early AD. SVM was trained with those VOIs and certain filters, which were pruned by
Random Forest (RF). The model showed 0.97 AUC (sensitivity 89%, specificity 94%) in
distinguishing normal controls (NCs) from AD, and 0.92 AUC (sensitivity 89%, specificity
80%) in distinguishing NCs from MCI. Rather than manual feature extraction, Salvatore
et al. introduced Principal Component Analysis (PCA) to extract features [17]. They
presented a SVM-based classifier with 509 subjects, and extracted the features using PCA
with preprocessed images. The model achieved 76% classification accuracy for NC vs. AD,
and 72% for NC vs. MCI patients. They focused on interpreting the results and constructed
a voxel-based pattern distribution map to identify meaningful features. Other studies have
used deep learning methods, which are known to be good feature extractors and classifiers,
simultaneously.

A recent study applied the Convolutional neural network (CNN) which is one of the
popular deep learning methods [18]. In a test with 695 subjects’ MRI data, a CNN-based
auto encoder model showed 86.6% classification accuracy for controls vs. AD, and 73.9%
classification accuracy for controls vs. MCI.

However, the models mentioned above are somewhat limited in certain respects.
First, manual feature selection requires a profound understanding of the disease and its
cause/correlates, and a long and time-consuming analysis. Second, it is difficult to identify
the major contributors (or biomarkers) to classification from deep learning models because
of the models’ high complexity and architecture. Third, a single classifier may be less



Brain Sci. 2021, 11, 453 3 of 14

reliable. Thus, more robust, stable, and interpretable classifiers may be more suitable in
classifying and understanding AD, given the high dimensionality and complexity of brain
MRI features. One such classifier is the Random Forest (RF) model, which is an ensemble
algorithm. This model has several advantages over other methods, such as the ability to
manage highly non-linearly correlated data, robustness to noise, and a structure for efficient
parallel processing [19]. Indeed, RF has shown good performance in various scientific
fields [20–23]. However, despite its strength, this model is not investigated actively as a
method to predict or understand AD. In the past decade, several studies have reported
that RF demonstrates better performance than other methods. However, those studies
evaluated RF with relatively small samples (N = 26 to 870 subjects). Thus, it is timely
to investigate RF’s performance and compare it with other machine learning methods,
including deep learning, with relatively larger datasets.

The aim of this study is to evaluate RF model and investigate its effectiveness in
predicting AD with a relatively large data which was not used in literatures. Additionally,
with the help of RF, we attempted to identify the meaningful brain areas which discrim-
inates AD from normal control. To do so, we used 2250 subjects’ brain MRIs. Regional
volumetrics were estimated, and we applied RF to classify NC, MCI, and AD patients.
The results were compared with the conventional linear classifier SVM and two neural
network models (Multi-Layer Perceptron and CNN). Finally, we investigated the input
features based on their importance, which is one of the advantages that RF provides to
identify AD’s promising biomarkers. As a result, we demonstrate that the three areas,
hippocampus, amygdala, and inferior lateral ventricle, are promising biomarkers for AD.

The next sections are organized as follows. In Section 2, the ADNI data, data process-
ing, and RF model for data analysis are explained. In Section 3, we present the results from
various models and biomarker identification by RF. Then, the results and limitations are
discussed in Section 4. Finally, we conclude this study in Section 5.

2. Materials and Methods
2.1. Brain MRI Data

The data used in this study were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu, accessed on 28 February 2021) [24]. The
ADNI was launched in 2003 as a public-private partnership led by Principal Investigator
Michael W. Weiner, MD. Its primary goal is to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other biological markers, and clinical
and neuropsychological assessment can be combined to measure the progression from
MCI to early AD. ADNI has three datasets, ADNI1 (2004–2009), ADNI2/GO (2010–2016),
and ADNI3. We used part of the ADNI1 dataset with T1 weighted images. For current
information, see www.adni-info.org (accessed on 28 February 2021).

The data included 2250 subjects with age, CDR, and MMSE scores. On average, 75-
year-old subjects were examined who included 687 NC, 1094 MCIs, and 469 AD patients.
The clinical dementia rating (CDR) is one of the representative scores used to assess
recognition and social function [3], and is divided discretely into 0, 0.5, 1, 2, 3. NC subjects
received 0, MCI subjects 0.5, and dementia subjects more than or equal to 1 according to
their symptoms’ severity. Among dementia subjects, some have AD dementia and checked
as amyloid positive through a positron emission tomography (PET) scan. The Mini-Mental
State Examination (MMSE) is also a representative score used to assess various recognition
states [4]. On the MMSE, NC subjects received from 30 to 24, MCI subjects from 23 to 18,
and AD subjects from 17 to 0. The information on the data is summarized in Table 1.

adni.loni.usc.edu
www.adni-info.org
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Table 1. Demographic information for NC (normal controls), MCI (mild cognitive impairment), and
AD (Alzheimer’s disease) groups (N = 2250).

NC MCI AD

Subjects 687 1094 469
(Male, Female) (357, 330) (702, 392) (249, 220)

Age 76.41 ± 5.07 75.42 ± 7.08 75.05 ± 7.60
CDR (Clinical Dementia Rating) 0.01 ± 0.13 0.51 ± 0.14 0.85 ± 0.41

(No. of subjects 1) (687) (1091) (468)
MMSE (Mini-Mental State Exam) 29.07 ± 1.11 26.51 ± 2.62 22.42 ± 3.32

(No. of subjects 1) (686) (1090) (468)
1 Some subjects do not have survey-based test result.

FreeSurfer (https://surfer.nmr.mgh.harvard.edu, accessed on 28 February 2021) is an
open-source software used to process and analyze human brain MRI images [25]. We used
FreeSurfer v. 6.0 with intel i9-9980XE CPU, which is run with OpenMP as the 8 threaded
option. This software provides volumetric skull stripping, image registration, cortical
segmentation, thickness estimation, longitudinal processing, visualization, and many more
functions for brain MRI images. We segmented brain regions and obtained their volumetric
information through FreeSurfer. An example of FreeSurfer’s segmentation result is shown
in Figure 1. On average, we obtained four processed results from four datasets every four
hours with parallel computing. Overall, 2250 data were generated over the 3~4 months of
the study.
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Figure 1. Brain segmentation provided by FreeSurfer software.

2.2. Feature Selection

Initially, we obtained 63 volumetric features from processing with FreeSurfer, as listed
in Table 2. Then, a further feature selection procedure was applied to choose meaningful
feature sets that may be beneficial for certain machine learning algorithms. Two steps
were conducted in the feature selection procedure. First, we estimated the statistical
significance of differences in all possible pairs of the three groups (NC, MCI, and AD).
Three pairs were tested with Welch’s t-test for each feature (e.g., volume information),
and 29 features that differed significantly (p < 0.05) in all comparisons (NC vs. MCI, MCI
vs. AD, and NC vs. AD) were chosen as the meaningful feature set. These features are
BrainSegNotVent, BrainSegNotVentSurf, VentricleChoroidVol, lhCortex, rhCortex, Cortex,
lhCerebralWhiteMatter, rhCerebralWhiteMatter, CerebralWhiteMatter, SubCortGray, To-
talGray, BrainSegVol-to-eTIV, lhSurfaceHoles, EstimatedTotalIntraCranialVol, Left-Lateral-
Ventricle, Right-Lateral-Ventricle, Left-Inf-Lat-Vent, Right-Inf-Lat-Vent, Left-Putamen,
Right-Putamen, 3rd-Ventricle, Left-Hippocampus, Right-Hippocampus, Left-Amygdala,
Right-Amygdata, Left-Accumbens-area, Right-Accumbens-are, WM_hypointensities, and
Optic-Chiasm.

https://surfer.nmr.mgh.harvard.edu
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Table 2. Description of segmented parts of brain provided by FreeSurfer.

Name Description Name Description

BrainSeg Brain segmentation volume Caudate Volume of caudate
BrainSeg
NotVent

Brain segmentation volume
without ventricles Putamen Volume of putamen

BrainSeg
NotVentSurf

Brain segmentation volume without
ventricles from surf Pallidum Volume of pallidum

Ventricle
ChoroidVol Volume of ventricles and choroid plexus 3rd-Ventricle Volume of 3rd-Ventricle

Cortex Total cortical gray matter volume 4th-Ventricle Volume of 4th-Ventricle
Cerebral

WhiteMatter Total cerebral white matter volume 5th-Ventricle Volume of 5th Ventricle
SubCortGray Subcortical gray matter volume Brain-Stem Volume of brainstem

TotalGray Total gray matter volume Hippocampus Volume of hippocampus
SupraTentorial Supratentorial volume Amygdala Volume of amygdala
SupraTentorial

NotVent Supratentorial volume without ventricles CSF Volume of cerebrospinal fluid

SupraTentorial
NotVentVox

Supratentorial volume without ventricles
voxel count Accumbens-area Volume of the nucleus accumbens

Mask Mask (skull tripped) volume VentralDC Volume of ventral diencephalon
BrainSegVol-to-eTIV Ratio of BrainSegVol to eTIV vessel Total volume of the brain vessel

MaskVol-to-eTIV Ratio of MaskVol to eTIV choroid-plexus Volume of choroid plexus
SurfaceHoles Total number of defect holes in surfaces

prior to fixing WM-hypointensities Dark white matter on a
T1-weighted image

EstimatedTotal
IntraCraniaVol Estimated total intracranial volume non-WM-hypointensities Dark gray matter on a

T1-weighted image
Lateral-Ventricle Lateral-Ventricle volume Optic-Chiasm Volume of optic chiasm

Inf-Lat-Vent Inferior Lateral Ventricle volume CC_Posterior Volume of the corpus callosum in
the posterior subcortical

Cerebellum-White-Matter Total cerebellum white matter volume CC_Central Volume of the corpus callosum in
the central subcortical

Cerebellum-Cortex Cerebellum cortical gray matter volume CC_Anterior Volume of the corpus callosum in
the anterior subcortical

Thalamus-Proper Total Thalamus area volume

Second, we identified features that showed a consistent increasing or decreasing pat-
tern in the mean value from NC to MCI to AD. Thus, 6 features were removed from the
29 features, and finally 22 features were retained—VentricalChoroidVol, lhCortex, rhCor-
tex, Cortex, SubCortGray, TotalGray, BrainSegBol-to-eTIV, lhSurfaceHoles, Left-Lateral-
Ventricle, Right-Lateral-Ventricle, Left-Inf-Lat-Vent, Right-Inf-Lay-Vent, Left-Putamen,
Right-Putamen, 3rd-Ventricle, Left-Hippocampus, Right-Hippocampus, Left-Amygdala,
Right-Amygdala, Left-Accumbens-area, Right-Accumbens-area, and WM-hypointensities.

2.3. Random Forest Algorithm (RF)

The RF algorithm is a type of ensemble algorithm that consists of many Classification
and Regression Trees (CART) [26]. These trees are trained with bootstrapped samples and
the aggregated models’ results. This process, referred to as bagging, prevents the model
from overfitting and generalizes well. As each tree grows, it sets its child nodes’ judgment
to maximize the amount of newly acquired information. It can be represented by the Gini
impurity, which is the same as the Gini index, and is calculated as follows:

Gini Impurity = 1 − ∑pj (1 − pj) (1)

in which pj denotes the probability that an element will be classified for a distinct class [27].
Each tree grows in a direction that minimizes the Gini impurity. All trees receive a dataset
shuffled randomly and grow differently. These trees produce results with real data, and
largely, the voted class is selected.

2.4. Classification Analysis

The three groups’ (NC, MCI, and AD) classification accuracy was estimated for each
machine learning model. Every processing step was conducted in Python using the Scikit-
learn [28] and Pytorch [29] libraries. For the RF models, the number of trees for bagging
was set to 5000 which was manually set and large numbers considering related studies, and
the RF classifier (RFC) and regressor (RFR) were constructed and compared. We also tested



Brain Sci. 2021, 11, 453 6 of 14

a conventional linear SVM and a non-linear SVM with a Radial Basis Function (RBF-SVM)
kernel. The regularization parameter, ‘C’, in Scikit-learn was set to 1.0 for both SVMs, and
the kernel coefficient, ‘gamma’, was set to 1/(num. of features * X.var()) for RBF-SVM
which are the default values in Scikit-learn framework.

Two different neural network models were generated. MLP is a feedforward artificial
neural network that consists of input-hidden-output layers. CNN is like MLP, but it
includes convolution layers, some of which are connected sparsely or in part rather than
fully. The MLP and CNN structures were designed as follows. MLP is constructed with
one input layer, three hidden layers, and an output layer. CNN consists of two convolution
layers and three fully connected layers with a kernel size of 4, stride 1, and no zero-padding
settings. As the input data are one-dimensional, convolution layers were implemented
with a one-dimensional convolution layer.

For these hyperparameters (number of hidden layers, kernel size, and stride), we tried
to keep the same complexity between MLP and CNN. Thus, two models were designed
with four hidden layers and the same structure of the last layer. After several simulations,
other parameters were chosen empirically. The Rectified Linear Unit (ReLU) function and
Softmax were used as activation functions between two consecutive layers and after the
output layer, respectively. Loss was estimated based on Cross entropy, as it is used widely
for multi-class classification. The Adam optimizer was used for backpropagation of loss,
and early stopping was applied during training the MLP and CNN, which is activated
when the testing loss is greater than the previous loss value more than 7 times consecutively.
The MLP and CNN’s structures are presented in Figure 2.
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The features in Input Layer were either 63, 29, or 22. CNN is the structure of the convolutional neural
network model. The features in FC Layer 1 are either 1824(32 × 57), 736(32 × 23), or 512(32 × 16).

The models’ classification accuracies were estimated with the cross-validation tech-
nique. The given feature sets were z-scored for normalization and corresponding labels
were marked 0(NC), 1(MCI), and 2(AD). The normalized data were split into training and
test sets and were fed into the cross-validation algorithm to produce a model based on the
training data and test data’s classification accuracy. In addition, with the three conditions
of the number of features (63, 29, and 22), we constructed various models repeatedly
and generated their results. This procedure was repeated 100 times using 10 × 10-fold
cross-validation, and finally, the mean accuracy and standard deviation were obtained
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for each model and feature set. Then additionally, Precision, Recall and F1-score of RF
algorithm were calculated for further investigation.

2.5. RF-Based Biomarker Analysis

The benefit of using RF is that this algorithm provides the features’ importance, which
is effective in identifying biomarkers. As the RF model selects more promising features for
classification, the Gini index is an effective indicator when identifying biomarkers. Unlike
the conventional approach, which selects the target biomarkers before the classifier model
is constructed, RF-based biomarker identification is more useful, particularly when dealing
with high-dimensional and non-linear data. In this study, we investigated the feature
importance calculated as the decrease in node impurity (Gini Index), which consisted of
5000 decision trees. As mentioned before, we constructed the RF model with three kinds
of features repeatedly and obtained the feature importance. Based on the chance values,
which are 0.016, 0.035, and 0.046 for 63, 29, and 22 features respectively, the features that
had a feature importance higher than the given threshold were selected, and the common
features across the three conditions were identified as the final promising feature set. The
volumetric values of the biomarkers identified were analyzed to determine the differences
among NC, MCI, and AD, and statistical significance was evaluated with Welch’s t-test.

3. Results
3.1. Classification Accuracy

All models were trained with 63 features, 29 features, and 22 features, respectively,
and tested with 10 × 10-fold cross-validation. The classification accuracies are presented in
Figure 3. Every model showed the highest classification accuracy with more features, except
for linear SVM, which showed no significant difference between the 63 and 29 feature sets.
Indeed, linear SVM exhibited the lowest performance. Comparing the accuracy across
models, RF (90.2% ± 2.4%), MLP (89.6% ± 3.3%), and CNN (90.5% ± 2.1%) with 63 features
yielded relatively high accuracies near 90% for the three-class problem.
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significantly are marked N.S. (non-significant).

As the number of features decreased, the amount of information the data held also
decreased. However, some models’ accuracies decreased only slightly, while others lost
considerable accuracy. With the 22-feature set, CNN and MLP’s accuracy decreased by
−4.6% and −7.6%, respectively, while RF showed a smaller decrease of −3.8%. Interest-
ingly, the standard deviation increased from 2.1% to 7.0% in CNN, and from 3.3% to 4.0%
in MLP. However, no change was observed in RF, 2.4% to 2.4%.
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Precision, Recall, and F1-score are also important metrics in measuring performance.
Table 3 presents those values calculated from RF model. As a result, 63 feature-set also
shows the best performance over all cases. Interestingly, Precision (97.9%) which is positive
predictive value, is higher than Recall (74.1%) and F1-scores (84.4%) for AD classification.

Table 3. Precision, Recall, and F1-score for RF algorithm.

Precision Recall F1-Score

NC MCI AD NC MCI AD NC MCI AD

63 features 92.9% 86.5% 97.9% 91.2% 96.5% 74.1% 92.0% 91.2% 84.4%
29 features 89.2% 84.9% 94.9% 89.1% 93.4% 73.3% 89.1% 88.9% 82.5%
22 features 88.3% 83.9% 93.9% 87.9% 93.3% 70.5% 88.0% 88.3% 80.3%

NC (normal controls), MCI (mild cognitive impairment), and AD (Alzheimer’s disease).

3.2. Biomarker Identification

RF provides feature importance information which is effective in identifying the
meaningful brain areas. This means that features with higher feature importance are likely
to better discriminate one condition from others. We attempted to investigate these scores
to check which areas are promising in classification of three groups.

Feature importance values for each of the three feature groups were extracted and
averaged from the RF classifier with 5000 decision trees, and the results are presented in
Figure 4. We obtained the common areas in which the corresponding feature importance
crossed the chance line (red vertical line in Figure 4). In the 63, 29, and 22 feature sets, 16,
8, and 7 features were identified, respectively. Among the 16 features, 4th-Ventricle and
CC_Posterior showed no significant difference in any comparisons, and Mask and Left-
Cerebellum-Cortex differed significantly in the NC vs. MCI and MCI vs. AD comparisons.
Among eight features, EstimatedTotalIntraCranialVol showed no increasing or decreasing
pattern in the mean value from NC to MCI to AD. As a result, six areas were identified; Left-
Hippocampus, Right-Hippocampus, Left-Inf-Lat-Vent, Right-Inf-Lat-Vent, Left-Amygdala,
Right-Amygdala. Combining the left and right sides, we identified three promising brain
regions, the hippocampus, amygdala, and inferior lateral ventricle. The hippocampus and
amygdala shrunk, while the inferior lateral ventricle enlarged as the symptoms worsened.
This combined volumetric information’s statistical test results are shown in Figure 5, in
which the three regions differed significantly in all comparisons.

Figure 6 shows MRI images of two representative subjects from the NC and AD
groups, in which shrinkage of the hippocampus and amygdala and enlargement of the
inferior lateral ventricle is observed clearly. The hippocampus shrunk from 7204 mm3 to
6414 mm3, the amygdala from 2934 mm3 to 2335 mm3, and the inferior lateral ventricle
enlarged dramatically from 2165 mm3 to 4882 mm3.
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Hippocampus: Yellow, Amygdala: Cyan, and Inferior Lateral Ventricle: Purple). Notably, the NC’s hippocampus and
amygdala are larger and the inferior lateral ventricle is smaller than that of the AD subject.

4. Discussion

RF may be an effective tool or model in MRI analysis. In general, MRI comes in high
dimensional data which may introduce a bias or produce less reliable results. RF is relatively
robust to noise and complex data (e.g., high dimensional and highly correlated data). In
addition, this model provides feature importance score which is useful in investigating
biomarkers. However, RF has been applied in only several studies in the neuroimaging field
for diagnostic classification of AD. Unfortunately, extant studies with RF have evaluated
only relatively smaller samples [27] because of difficulty collecting medical brain MRI data.

This study included a large number of subjects to create robust models for unclear data.
As shown in Figure 3, the RF classifier achieved reliable accuracies with lower standard
deviations not only compared to other studies [17,18], but also other neural network models.
Identifying the disease’s biomarkers through learned models is as important as producing
highly accurate models to classify or predict AD. Interpreting models’ judgment process
can explain which models have been learned from data pools and detect which features
are important to classify the disease. We evaluated feature importance values to ascertain
biomarkers through the trained RF models shown in Figure 4.

The principal change in AD is the loss of neurons in the hippocampus and the amyg-
dala’s atrophy [30,31]. The smaller the hippocampus and amygdala’s volumes, the more
likely the patient is to be diagnosed with AD. As the hippocampus and amygdala are
responsible for short- and long-term memory, these regions’ extreme shrinkage is the
primary reason for memory loss, which is the main symptom of AD. Figure 4 shows that
the high-ranked features related to AD’s progression are the hippocampus, amygdala,
and inferior lateral ventricle. There may be a causal relation in which the hippocampus’s
contraction enlarges the lateral ventricle [32], because the inferior lateral ventricle is a
space in the cerebral hemisphere filled with fluid and the hippocampus lies adjacent to it.
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Figure 5 demonstrates these changes clearly and proves that the loss in the hippocampus
and amygdala’s volume and enlargement of the inferior lateral ventricle are related strongly
with AD’s progression.

We demonstrated that machine learning techniques distinguish AD patients from
MCI and NC subjects well. In particular, RF, MLP, and CNN achieved approximately
90% classification accuracy. However, as we observed in Figure 4, RF showed robust
performance with a smaller number of features. Further, given the change in the standard
deviation from 63 features to 22 features, RF demonstrated the greatest stability. This may
be because its internal structure uses a voting method from outputs from many decision
trees. In this study, we used 5000 trees, which is a large number, and believe that this
structure led to the RF model’s reliability. On the other hand, RFR show around 81% for 63
feature set which is lower than RFC, MLP and CNN. This low performance may be because
of dataset. In this study, we did not use MRIs from the different stages of AD. However, we
used MRIs of three distinct groups (NC, MCI and AD) because of the limited information
in the ADNI data used in this study. Nonetheless, we think that 81% is somewhat of an
interesting result, because this means that RFR can predict at least three stages from NC
to MCI to AD. However, the well-defined data which represents disease stages of each
patient, is necessary for solid conclusion. In the future, we aim to collect such data and
design a model to predict the stages of disease progression.

On the other hand, there are new trends to explain the judgment of deep learning and
other artificial intelligences that have been developed since 2017 [33], which are referred
to as explainable AI (XAI) technology. Although deep learning methods’ performance is
excellent, it is important to interpret and explain the way they ensure the results. Through
this technology, we can understand what the deep learning model learned from the data.
These insights are valuable for many research topics, and various topics use this technol-
ogy [34]. Our research will allow us to determine the hidden communications between
each part of the brain with AD’s onset if we can demonstrate that deep learning models
perform perfectly. Relations in AD may exist among some of the 22 features that achieved
high feature importance factors. Further, in various models, these features can serve as
strong biomarkers to diagnose AD.

We used FreeSurfer in this study to segment brain regions. Thus, volume estimation’s
quality may be less accurate because over- or under-estimation occurs in processing. Indeed,
it has been reported that, at least in a pediatric case, the volume of the hippocampus and
amygdala that FreeSurfer obtained may be inaccurate [35]. Although our data did not
constitute a pediatric population, there is a slight chance that the automatic segmentation
may introduce a bias or small error because the segmentation is not optimal. We believe
that more accurate segmentation algorithms will improve the volume estimation’s accuracy
and possibly increase the significance of the results. Another issue related to segmentation
is that 63 features were evaluated in this study. |However, these may not be sufficient
to represent the whole brain areas. For example, entorhinal cortex was not included
and could not be evaluated by RF model. However, the area also undergoes atrophy
such as hippocampus and amygdala during the disease progression [36–38]. Thus, more
areas which are from an advanced and accurate brain segmentation algorithm, should be
evaluated for identifying further promising biomarkers.

5. Conclusions

In this study, we constructed an RF model with a large number of sub-trees (N = 5000)
to classify NC, MCI, and AD with a large sample of brain MRI data (N = 2250). An RF
model with three feature sets was evaluated and compared with other machine learning
methods, including neural network models. As a result, we confirmed that the RF model
had performance comparable to that of deep learning model, but was more robust and
stable with fewer features. In addition, we identified three brain areas, the Hippocampus,
amygdala, and inferior lateral ventricle that distinguished AD patients from NC’s best. In
conclusion, RF is a powerful tool for classification and biomarker identification.
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